'100% and beyond' *E EFFICIENCY*

Infinite Scalability of the Perfect Fit

Brilliant mind'

FIT-IMPACT

rescreating clothes for the futi

'You are either Finstein of pattern making or mad. Whatever you are very special'

What you do is fully aligned with our Sustainability principles. Our full support

KEY APPAREL INNOVATION 2026/27

r knowledge from ich is so strongly needed

FOR KNITTING A TAILORED THREE-DIMENSIONAL GARMENT, AND A KNIT GARMENT **Publication Number:** WO/2024/094577

'(EN) AN AUTOMATED METHOD

Applicants:

NATALIYA DOLENKO GENEVE SA Inventors: DOLENKO, Nataliya

It is a new use of knitwear in the market in general... Products, which can be developed along different categories... I am convinced. Beautiful sellable products

'It is amazing how the railored integrity of the garments is maintained even in extreme conditions!

NATALIYA DOLENKO

You are creating the Future. Fabrics is the past

ENGINEERING & COMPUTER SCIENCE APPAREL & TEXTILE ENGINEERING 'Magnificent'

'Magnificent'

Couture

PARIS MATCH Suisse

Patented Correlation Method

2025 NATALIYA DOLENKO GENÈVE SA EDEN-ROC, Boutique

GARMENTS

The information in this document is believed to be accurate, but neither the Company nor the inventor makes any representation or warranty as to its completeness or accuracy and shall not be liable for any loss or damage arising from its unauthorised use. The descriptions provided herein do not constitute a legal description of the invention and should not be construed as instructions for making, reproducing or using the patented principles. Any attempt to replicate the principles without the written permission of the company is strictly prohibited and will result in legal action under patent law.

Patent Status: The core claims of the invention have been approved and additional claims are expected during the national stages. The essence of the innovation is protected while the full patent process continues. Descriptions here do not constitute legal instructions for making or reproducing the patented principles.

This document is for general information only. Any unauthorised use, reproduction or redistribution, especially for commercial purposes, is a violation of both copyright and patent laws and will result in severe legal consequences. By accessing this document, you agree to be bound by these terms and conditions.

APPAREL MANUFACTURING INNOVATION: ENGINEERING & COMPUTER SCIENCE/APPAREL & TEXTILE ENGINEERING/GARMENTS

Endorsed by the Leading Experts,

Published in VIEW TEXTILES FORECAST Issue 150 Season A/W 2026/27 directly after Editor-in-Chief, and

Formally cited within Nike Innovate C.V. innovation, alongside Adidas AG and Nike Innovate C.V. patents by GOOGLE PATENTS – marking a new benchmark in apparel engineering,

RESPONSIVE TAILORING THROUGH DYNAMIC FIT ADJUSTMENT

Is a Patented Correlation Method that allows single-fibre garments to dynamically adapt to the wearer's body shape and movements in real time, ensuring a perfect fit without the need for additional details or fasteners. This Method introduces a revolutionary approach to garment engineering, combining reinforcement structures and varying knit angles for both structural stability and dynamic adaptability. By leveraging the interplay between the reinforcement structures and the directional stretch properties of knit fabrics, this process enables garments to respond naturally to body movement and maintain a stable, perfect fit while being produced at scale. Its precision, adaptability, and mechanical foundation make it the only viable solution for mass-producing self-adjusting tailored garments for the foreseeable future.

Transformational Impact:

- Unmatched Speed and Precision: Delivers a perfect fit with consistent adaptability in real time across production scales. Sustainability at Its Core: Uses a single yarn type for easy recycling, with no seams or fasteners, reducing waste and promoting longevity.
- Streamlined Production Chain: Optimises design, development, and manufacturing, enabling scalable, accurate, highquality production.
- Universal Scalability: Works seamlessly with any programmable knitting technology.
- Dynamic and Static Fit Harmony: Achieved through fibre behaviour and construction techniques, that balance both flexibility and structure.
- Long-Term Viability: Due to its mechanical component, it remains the only viable solution for self-adjusting garments at scale, with no competition on the horizon for the next significant leap in garment manufacturing technology.

WO2024094577 - AN AUTOMATED METHOD FOR KNITTING A TAILORED THREE-DIMENSIONAL GARMENT, AND A KNIT GARMENT

This innovation represents a groundbreaking development in the field of apparel technology. It enables garments to dynamically adjust to different body shapes, offering a level of fit and adaptability that was previously unattainable in mass-produced garments.

Technological Landscapes of:

- Engineering & Computer Science (for programmable production)
- Apparel and Textile Engineering (for garment construction and mechanical movement)
- Garments, including Outerwear

Abstract

(EN) The present invention provides for an automated process for producing knit garments having a tailored look when worn by wearers having different body shapes. Through a combination of woven fibre tailoring techniques, adapted to the domain of knit fabrics, and an innovative approach to programming a three-dimensional seamless garment knitting machine to knit the garment in a new way, a knit garment can be produced which adapts to fit different wearers having different body types while following the wearer's anatomy and providing support where required, thus allowing the same garment to provide a tailored look to different wearers having different body shapes.

World Intellectual Property Organisation (WIPO) Application Number PCT/EP2023/08012

Publication Date: 10.05.2024

Link: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024094577 Applicants: NATALIYA DOLENKO GENEVE SA [CH]/[CH]

Inventors: DOLENKO, Nataliya

For a deeper understanding of how this process works and its wider applications across various industries, please read the detailed explanation below.

RESPONSIVE TAILORING THROUGH DYNAMIC FIT ADJUSTMENT—

The Perfect Harmony Between Tailoring Precision And Functional Adaptability

WHAT IT IS

Responsive Tailoring is a Patented Correlation Method of precision garment engineering designed to achieve a perfect fit on an unlimited scale for the mass market. It enables the creation of systems that produce garments with advanced functionality that dynamically self-adjust in real time to respond to the wearer's movements, shape, weight fluctuations and posture changes. The result is a perfect fit with every movement. In addition to self-adjusting, these garments also provide structure and shaping where needed, seamlessly combining adaptability with the precision of bespoke tailoring in a single dynamic construction.

• At the heart of this invention is a mechanical movement principle that leverages the interaction between reinforcement structures and dynamic panel movements, transforming the garment into a dynamic, adaptive construction. This construction adjusts its fit, shaping and structuring the body to maintain comfort while creating a perfectly tailored fit. The panels strategically interact at different angles, triggering stability and stretch properties, and maintaining the structural integrity of the garment by incorporating reinforcement structures within the dynamically moving panels. This is Responsive Tailoring in action.

By following this framework, an unlimited variety of perfectly fitting garments can be produced without the need for personalised fittings, 3D body scans, fasteners, additional details or seams. Due to the mechanical nature and the interrelationship that combines a blend of fields - engineering & computer science (for programmable manufacturing), apparel and textile engineering, and garment engineering - it is the only Method capable of delivering perfectly fitting, self-adjusting garments on a mass scale. As a result, Responsive Tailoring is setting a new standard for how the industry is reshaping itself.

Key Characteristics of Responsive Tailoring:

Breakthrough Approach to Garment Engineering

 A shift from static, fixed-size garments to intelligent designs that adapt to the wearer's body and movements, providing both structural stability and dynamic adaptability.

o Perfect Fit for All

- Achieves perfectly tailored garments with the same precision at all production scales.
- · Combines reinforcement structures and material adaptation to create and uphold a tailored, woven-like silhouette.
- Accommodates body variations and weight fluctuations within given sizes while maintaining a perfectly tailored look.

o The Ultimate Sustainable Solution

- Simplifies recycling with a single material and fibre design.
- Eliminates the need for fasteners and seams.
- · Minimises waste throughout the processes.

Infinite Scalability

- Combines precision and sustainability to deliver bespoke fit at scale.
- Suitable for any programmable high-tech knitting technology, removing the barriers to adoption.

Optimisation of All Processes

- 3-size production across 8 standard sizes delivers in unprecedented efficiency.
- Predictable end results with an optimised modular step-by-step process.

Key Applications:

- **Apparel:** Suitable for various types of clothing, ensuring a perfect fit, responsive structure, and adaptability for everyday wear, fashion, or specialised garments.
- Medical Wearables: Improve posture correction and provide therapeutic support with precision fit and dynamic adaptability.
- Performance Sportswear: Providing dynamic movement and compression tailored to the needs of the athlete, enhancing performance and comfort.
- Industrial Applications: Adapting garments to task-specific requirements, ensuring functionality, durability, and performance in demanding work environments.

HOW IT WORKS: THE RELATIONSHIP BETWEEN THE MECHANICAL AND PROGRAMMABLE ASPECTS

The synergy between the mechanical and the programmable aspects is the cornerstone of the invention, enabling the self-adjusting, customised dynamic fit that defines its transformative impact. These two elements are inseparable and work together to achieve results that neither could achieve alone on a mass scale.

1. Mechanical Aspects

The mechanical aspects provide the framework for the responsive structure and functionality required for movement, stability and adaptability.

Key Features:

- o Panel Movement: Dynamic interaction of garment panels to adapt to body shape in real time.
- Stability vs. Flexibility: A precise balance between fixed and adaptive elements, to ensure tailored aesthetics and natural
 movement.
- o Precision Engineering: Guarantees controlled adjustments that seamlessly maintain fit and appearance.

2. Programmable Aspects

The programmable aspects define the instructions and set the processes in motion, using advanced algorithms to control and coordinate every mechanical movement during the production, ensuring the large-scale production of perfectly fitting garments.

Key Features:

- o Innovative Programming Framework: Goes beyond standard programming tasks to enable dynamic adaptability and fit.
- o Automation: Ensures precise, repeatable at any scale garment structures for scalable production.
- Customisation: Pre-programming for specific purposes, garment types and size ranges, such as dynamic fits, expands
 applications and increases efficiency.

3. Their Interdependence

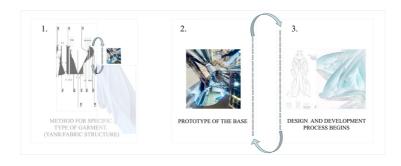
- Mechanics Rely on Programming: The adaptability and dynamic behaviour of the panels depend on precise algorithms that use high-tech knitting to achieve unparalleled precision and speed. Beyond automated programming, the principles remain effective, demonstrating their versatility and fundamental strength.
- o **Programming is Defined by the Mechanics**: Algorithms are specifically tailored to the physical structure and behaviour of the panels, ensuring that stability and flexibility work seamlessly as intended.
- o **Combined Outcome**: Together, the mechanical and programmable elements create a unified system that enables dynamic adaptability and bespoke precision on a previously unattainable scale.

4. Why This Synergy Matters

- Inimitability: Competitors cannot replicate the programming without understanding the mechanical principles, and vice versa. Any adaptation of these principles would infringe upon the patent, as the unique integration of movement and stability principles, combined with programming, is exclusive to this invention.
- o Precision: The interplay between mechanics and programming provides unparalleled fit, comfort and functionality.
- Scalability: The programmable aspect ensures that the mechanical principles can be consistently replicated on a large scale, bridging the gap between bespoke and mass production.

Simplified Explanation

The mechanical aspects provide the physical framework for responsive tailoring through dynamic fit adjustments, while the programmable aspects set the processes in motion, using advanced algorithms to control and coordinate every mechanical movement within the production machinery. Together they form a seamless system that achieves self-adaptation and bespoke precision that neither could achieve independently on a mass scale.


NATALIYA DOLENKO^M

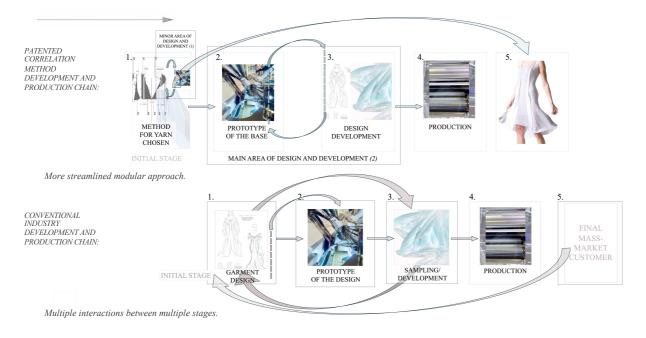
OPTIMISING PROCESSES

The Method addresses major industry challenges: Fit and Waste in Woven garments, and the Lack of Stability and Deformation in Knitwear. By leveraging interactive panel movement, this pioneering design, development, and production approach significantly reduces material use, production costs, and logistical demands, while utilising zero-waste high-tech knit. The extended garment life, resulting from reduced stretch and tear, enhances sustainability. The Method eliminates the need for 3D body scans, personalised measurements, made-to-measure patterns, or customised programming. Furthermore, it eliminates the need for fastenings and reduces size variations, with three sizes covering an eight-size range, thereby reducing overproduction and inventory costs.

As a result, the streamlined digitally controlled process enables continuous garment production with minimal external resources, significantly reducing overall resource consumption while maintaining the highest quality standards. The fundamental principles of stability and flexibility (or the controlled lack thereof) form the basis of this dynamic equilibrium, combining the structure of woven garments of any type with the comfort and adaptability of high-tech knitwear. The result is tailored garments that offer unrestricted movement.

SLIDE 1. SEQUENTIAL REFINEMENT. Modular design and development allows each stage of the process to be perfected before moving on to the next, ensuring that nothing is overlooked. This structured, step-by-step approach to testing ensures that problems are identified and resolved early, which can lead to more efficient product development and less waste in the design/development phase.

Once the overall garment type and shape has been selected, the fabric and main yarn are immediately tested on a pre-set construction to ensure a perfect fit (1.). This means that the fit of the future garment is provisionally guaranteed to the customer. Designers and developers have a clear understanding of the garment type they are working with when the design process begins (2.) and (3.), creating a kind of "real canvas in action". Such restructured process not only ensures the accuracy of new designs as final products (4.) but goes further by guaranteeing both the fit and appearance of the garment for the customer after purchase (5.).


High level of precision and foresight.

Guaranteed fit at an early stage. Clear direction for designers. High level of quality control early in the process. •

Consistency of fit and appearance. Efficient testing and development.

Final product is perfectly matches to the intended design, even when scalability becomes a factor.

SLIDE 2. THE RESULT IS A RESTRUCTURED PROCESS.

THE ECONOMIC AND ENVIRONMENTAL BENEFITS OF IMPLEMENTATION OF THE PATENTED CORRELATION METHOD RESPONSIVE TAILORING THROUGH SELF-ADJUSTMENT

The Patented Correlation Method (*HtK*) has been developed for high-tech programmable knitwear technology. Its adaptation enables rapid scaling of any volume or type of garment production, allowing the apparel industry to meet global demand sustainably without compromising quality or fit.

While woven apparel manufacturing has seen significant technological advances, it has yet to match the transformative impact of innovation in high-tech knitwear.

Shima Seiki's WholeGarment technology is designed to produce fully fashioned garments seamlessly. Various programmable knitting technologies are also producing advanced garments. These improve the efficiency and speed of production with minimal waste.

Programmable knitting is a new technology with advanced capabilities, but this table clearly demonstrates the transformative impact it can have on mass-market apparel by producing perfectly fitting garments using the **Patented Correlation Method**, which enables the production of perfectly fitting garments - something that cannot otherwise be achieved in terms of volume, cost, efficiency, land use, skilled labour and sustainability.

The key metrics in the table reflect a new era in apparel manufacturing through the Patented Garment Engineering process, where the combination of efficiency, adaptability and scalability results in not only in a perfect fit, but also in dramatic reductions in waste, CO₂ emissions and production costs.

KEY METRICS: The Economic and Environmental Benefits PATENTED CORRELATION METHOD FOR RESPONSIVE TAILORING THROUGH SELF-ADJUSTMENT

VS.

TAILORED CUT-AND-SEW MASS PRODUCED GARMENTS

Efficiency in Implementing the Patented Method

The scalability of the Method is limitless. The figures in this table compare various parameters related to the production of perfectly fitted garments—produced by the Method and by the traditional cut-and-sew techniques, both achieving the same result in terms of fit. While a workforce of skilled tailors—does not exist on this scale, the technological breakthrough of the Method allows for rapid growth and adaptation at any scale, enabling the apparel industry to meet global demand on a sustainable basis without compromising on quality or fit.

A PERFECTLY TAILORED GARMENT PRODUCED WITH THE PATENTED INVENTION

HIGH-TECH PROGRAMMABLE KNITWEAR

A TAILORED GARMENT PRODUCED BY THE CUT AND SEW WOVEN PROCESS

(Y)

(X)

Default Parameters for Sample Calculations

METRIC		METRIC		
Production Cost	€100	Production Cost	€380	
Self-Adjustability	Full: S (38/40IT, fits 36IT-42IT)	Self-Adjustability	0.5 Size	
	M (42/44IT, fits 40IT-46IT)			
	L (46/48IT, fits 44IT-50IT)			
Personnel	1/50 Highly Skilled	Personnel	1 Highly Skilled	
Production Time	2.4h	Production Time	15h	
Material Weight Garment	350g (350g)	Material Weight Garment	350g (420g)	
(Total Required) Production Waste	10g	(Total Required) Production Waste	70g	

CURRENT PRODUCTION CAPACITY

High-Tech Programmable Knitwear, (X): 60,000 machines available (operating 24/7), 1,200 technicians To match (X) **High-End Cut-and-Sew (Y)** requires: 1,642,500 skilled tailors, a number unlikely to be realistically available

IMPACT

- 1. Production Time Reduction: -84.0%
- 2. Production Cost Reduction: 73.7%
- 3. Skilled Workforce Reduction: 99.9%
- 4. Space Efficiency: + 99%
- 5. Unsold Rate Reduction Potential: -78.6%
- 6. Inventory Reduction Potential: -62.5%
- 7. Return Rate Reduction Potential: -71.4%
- 8. Adjusted Production Cost Reduction Including Unsold: 76.8%
- 9. Waste Reduction Including Unsold Garments: -82.4%
- 10. Waste Reduction per Garment Sold: -84.9%
- 11. Waste Reduction Potential due to Size Mismatch with Unsold Garments*: -85.3%
- 12. Waste Reduction Enabled by Expanded Customer Reach: -85.3%
- 13. Electricity Use Reduction: 66.7%
- 14. CO₂ Emissions Reduction per Garment Produced: -68.4%
- $15. \quad CO_2 \ Emissions \ Reduction \ per \ Garment \ with \ Sustainable \ Recycled \ Fibre \ for \ Luxury \ Apparel: -72.0\%$
- 16. Warehousing Space Reduction Potential: 80%
- 17. Warehousing Emissions Reduction: -81.6%
- 18. Fibre Recovery with an Increased Efficiency: 54.5% +
- 19. Luxury Fibre Waste Reduction: 91.2%
- 20. Recycling Efficiency: +54.5%
- 21. Reduced Recycling Costs: -77.8%
- 22. Projected Increase in Gross Profit from Resale: +61.3%
- 23. Increase in Net Profit: +235%
- 24. Potential CO₂ Emissions Avoided: 22.6 million tonnes of CO₂

GENERAL

MANUFACTURING EFFICIENCY

(Operating at 90% capacity)

X = 27.38Y

3,285 garments per machine/year 197.1M garments/year

Y

120 garments per tailor/year 197.1M garments/year

Production Time Reduction: 84.0%. Workforce Reduction: 99.9%

The Method with high-tech knitting reduces the required workforce by a factor of 1,367.5 times compared to high-end tailored cut-and-sew

Production Efficiency: Reduces complexity by manufacturing only 3 size categories instead of 8.

Customer Satisfaction: Ensures garments fit a wider range of body types within each size category.

Sustainability: Minimises waste from overproduction and unsold inventory.

PRODUCTION COST

X = 0.26 Y $\epsilon 100$ $\epsilon 380$

Cost Reduction: 73.7%, the Efficiency Ratio is 3.8.

SPACE EFFICIENCY

X = 0.73Y

Land Reduction: over 99%, the Efficiency Ratio 137.5.

SELF-ADJUSTMENT

With Self-Adjustment: 3 sizes to cover 8 traditional sizes

0.24M sq.m

Without Self-Adjustment: 8 traditional sizes

CURRENT GLOBAL SCALING POTENTIAL

(Per Year)

 $197.1M \times (8/3) \approx 525.6M$ customer reach potential

197.1M customer reach potential

33M sq.m

The Coefficient of Expanded Customer Reach Potential: 2.67

INVENTORY REDUCTION

Each size accommodates up to 4 adjacent sizes due to the self-adjusting capability (designed between two sizes and adapts 2 sizes up or down). Reduces the need to produce redundant sizes, significantly lowering inventory risks.

Each size is distinct and cannot self-adjust to adjacent sizes, leading to higher risks of overproduction and unsold stock.

Unsold Rate Reduction: 75.0% Inventory Reduction: 62.5%

EXCHANGE RATE VARIATIONS

4 14

Reduction in Exchange: 71.4%

UNSOLD GARMENTS DUE TO SIZE MISMATCH

3.75% 17.50% *7,391,250 34,492,500*

Unsold Garments Reduction Potential: 78.6%

27,101,250 garments less unsold

ADJUSTED COSTS PER GARMENT SOLD, DUE TO UNSOLD STOCK

X = 0.23Y $\epsilon 104$ Cost Reduction: 76.8% $\epsilon 447$

WASTE EFFICIENCY

WASTE PER SOLD GARMENT

Including Unsold Stock Waste

X = 0.151Y 24 gWaste Reduction: 84.9% 159 g

WASTE (%) INCLUDING THE UNSOLD GARMENTS

X = 0.176Y

6.61% Waste Reduction Ratio Including Unsold: 82.4%

37.5%

The following three calculations demonstrate the waste reduction achieved through the Patented Method (with 3-size high-tech knitwear to cover 8 size cut-and-sew tailored garment production), but they focus on different aspects of the savings:

- A. Direct impact of size mismatch reduction in unsold garments.
- B. Two-year waste reduction potential, considering extended garment longevity.
- C. Global waste reduction due to the extended customer reach potential, where garments fit multiple sizes.

A. ANNUAL WASTE REDUCTION POTENTIAL DUE TO SIZE MISMATCH REDUCTION OF UNSOLD GARMENTS

This calculation focuses on the direct reduction in waste due to the improved fit, where the 3size production with the patented Method leads to significantly less unsold stock

X = 0.15Y

4,559.9 tonnes

Yearly Potential Waste Reduction: 85.3%.

31,043.2 tonnes

6.8 times less waste, due to reduced unsold garments, 26,480 tonnes saved per year due to reduced unsold garments

B. TWO-YEAR WASTE REDUCTION POTENTIAL DUE TO SIZE MISMATCH REDUCTION OF UNSOLD GARMENTS WITH ADDITIONAL SAVINGS DUE TO INCREASED GARMENT LONGEVITY

(2 Years)

X = 0.07Y

4,559.9 tonnes 2-Year Potential Waste Reduction: 92.7%

62,086.5 tonnes

SAVINGS FROM THE SIZE REDUCTION

(3 sizes to cover 8 sizes)

C. GLOBAL WASTE REDUCTION DUE TO THE EXTENDED CUSTOMER REACH POTENTIAL

(Per Year)

This calculation emphasizes the wider market impact, showing how the extended size coverage (with garments fitting 4 different sizes) leads to global material savings and waste reduction.

It highlights that more customers can purchase garments, which reduces waste across the entire production cycle.

X = **14.7Y Y** 12,150 tons 82,782 tons

Global Waste Reduction Potential: 85.3%

70,622 tonnes of waste may be saved per year with 3-sizes perfectly fitting garments due to the expanded size coverage that serves more customers with fewer garments.

LUXURY FIBRE SAVINGS (PRESERVATION)

X = 0.915Y

Y

7,040 tonnes/year

Potential Luxury Fibre Savings Per Year: 96.8% Potential Waste Savings: 75,7 tonnes per year

82,782 tonnes/year

RESOURCE EFFICIENCY

ELECTRICITY CONSUMPTION IMPACT: 3-SIZE vs. 8-SIZE MODELS

X = 0.33Y

Y

1,182.6M kWh/year

Electricity Consumption Reduction Potential: 66.7%

3,547.8M kWh/year

CO₂ EMISSIONS: FROM YARN TO CONSUMER RAW MATERIAL (1) PRODUCTION (2) TRANSPORTATION (3) AND WASTE (4)

 $\mathbf{X} = \mathbf{0.32Y}$

(Per Garment)

2.31 kg CO₂

1.93 kg CO₂ 1.25 kg CO₂ 1.75 kg CO₂

2.31 kg CO₂ 11.25 kg CO₂ 2.10 kg CO₂

0.10 kg CO₂ 5.03 kg CO₂

0.25 kg CO₂ 15.91 kg CO₂

Overall CO₂ Emissions Reduction Potential: 68.4%

CO₂ EMISSIONS REDUCTION POTENTIAL PER GARMENT WITH/WITHOUT SUSTAINABLE FIBRE RAW MATERIAL (1) PRODUCTION (2) TRANSPORTATION (3) AND WASTE (4)

(Per Garment)

X = 0.28Y

Y Standard Luxury Fabric

Based on a 30% CO₂ Reduction with Sustainable Yarn: 1.35 kg CO₂ Transportation: 1.75 kg CO₂ Manufacturing: 1.25 kg CO₂ Waste: 0.10 kg CO₂

(Sustainable is at much higher cost): 2.31 kg CO₂

Transportation: 2.10 kg CO₂

Manufacturing: 11.25 kg CO₂

Manufacturing: 11.25 kg CO₂ Waste: 0.25 kg CO₂

4.45 kg CO₂

15.91 kg CO₂

CO₂ Emissions Reduction Potential per Garment: 72.0%

Translating into 2,260,266 tonnes of CO₂ saved yearly, calculated using sustainable yarn and standard luxury fabric. Sustainable luxury fabric costs are not compatible within a near price range.

ANNUAL CO2 IMPACT COMPARISON

(Per Year)

X = 0.28Y

Y

877.1K tonnes CO2

3,137.4K tonnes CO2

CO₂ Emissions Reduction Potential per Garment: 72.0%

CO2 Yearly Emissions Reduction Potential: 2,260.3K tonnes CO2 saved per year.

SAVINGS FROM THE SIZE REDUCTION

(3 sizes to cover 8 sizes)

- Warehousing Space Savings: 82.0% reduction.
- Energy Consumption Warehousing Emissions Savings: 81% reduction.
- CO₂ Emissions Reduction Potential: 70% reduction.

RECYCLING EFFICIENCY

RECOVERED FIBRE

85%

55%

54.5% More Efficient

Resulting in:

High-quality fibres suitable for reuse in luxury garments

Lower-quality fibres downgraded for non-luxury use. Higher sorting and pre-processing costs due to fasteners, adhesives, and blends.

PROFITABILITY

COSTS OF RECYCLING

 $\mathbf{X} = \mathbf{0.32Y}$ $\mathbf{\epsilon} 1.49/kg$ $\mathbf{\epsilon} 6.71/kg$

Cost Reduction: 77.8%

RESALE PROFITABILITY

Reselling high-tech knit garments with self-adjusting fit produced with the Method is at Least 60% More Profitable than cut-and-sew tailored garments, while the minimal mending required.

Process Simplification: drastically reduced the need for repairs, the garments are produced using seamless technology.

PROFITABILITY: SALES, RESALE, AND RECYCLING

(Net Profit per Garment)

Case Study 1:
Maximum Sustainability Approach:

Y €125.00

X1 = €423.6 = 3.39Y

Case Study 2:

Business-Optimised Model:

Y €125.00

X2 = €425.9 = 3.41**Y**

Increase in Net Profit: from 235%

GLOBAL IMPACT PROJECTIONS OVER 10 YEARS

Potential CO₂ Emissions to Avoid: 22.6M tonnes CO₂ avoided.

Potential Material Waste to Avoid: 1.55M tonnes (97.1% Less waste).

NATALIYA DOLENKO^M

PATENTED INVENTION

1. A GAME-CHANGER

This Patented Correlation Method is exclusive and is expected to remain the only viable system for the large-scale production of self-adjusting garments for the foreseeable future. The unique framework of this technology is based on its mechanical principles—the precise interaction between the structure of the material and its inherent stretch. The correlation of the dynamic adaptability and stability of the material ensures both stability and flexibility within its structural properties. This is the only process capable of creating an unlimited combination of self-adjusting structures, making it a breakthrough solution that integrates innovative principles and advanced manufacturing capabilities to ensure scalable, precise and reliable production of self-adjusting tailored garments.

Transformational Impact: This invention redefines production processes by:

- Achieving unparalleled precision and adaptability through an increased focus on fit.
- Embedding sustainability as a guiding principle, emphasising longevity, relevance and total customer satisfaction.
- Optimising the production chain to streamline design, development and production, ensuring an unprecedented level of
 predictability and control over the end result.
- One of its most groundbreaking features is the ability to self-adjust within two adjacent sizes, offering mass market consumers
 a fully tailored garment with unparalleled precision and adaptability.

Together, these advances are creating a paradigm. They are rendering older methods obsolete and setting a new industry standard.

2. FOUNDATION OF INVENTION

The patented process protects the exclusive principles for high-tech programmable knitwear, ensuring innovative outcomes that cannot be replicated by any existing technology. The result is a perfectly tailored dynamic fit that adapts to any body shape, achieved by a self-adjusting mechanism driven by the principle of interactive panel movement.

Core innovation:

The principle of interactive panel movement unites the structural qualities of woven garments with the comfort and adaptability of high-tech programmable knitwear, achieving a dynamic balance between stability and flexibility, allowing controlled adaptability in real time. The result is garments that retain the tailored, structured look of woven tailoring, while offering the unrestricted movement of high-tech programmable knitwear.

3. PROTECTION

At the heart of this technology is the combination of programmable high-tech knitting with dynamic adaptation mechanisms, enabling unprecedented results in garment fitting on a mass scale. At the patent's core is the integration of woven and knitwear principles, protecting not only the 'what'—the end result—but also the 'how'. While combining the stability of woven fabrics with the flexibility of knitwear, the technology goes beyond the materials themselves—incorporating movement due to gravity and how the panels interact with the body to achieve the dynamic fit. This is achieved through the precise interaction between mechanical panel movement for self-adjustment and structural reinforcement for stability.

By By closing all loopholes, the claims protect not only the results, but also the **defining interactions and features**, ensuring that no alternative can circumvent the core principles of the invention.

- **Processes**: The interaction between mechanical panel movement and self-adjusting mechanisms is so integral to the patented process that competitors cannot replicate the results through alternative programming, machine logic, fibre selection, stitch types, or construction techniques. Any attempt to do so would still **be based on the core principles** protected by the patent.
- **Products**: Even seemingly minor differences—such as aesthetic pattern changes, stitch variations, or design tweaks—cannot avoid infringement if they apply the core principle of self-adjusting for dynamic adaptability in the final result.

4. COMPREHENSIVE COVERAGE

The high-tech field of programmable knitwear is highly specialised in its precision, relying on programmed algorithms and advanced construction techniques to produce innovative garments. However, even the most advanced technologies alone cannot achieve the dynamic fit of self-adjusting garments without the implementation of the patented method. This method works across all angles of construction for any garment, meaning that any attempt to replicate the principles of dynamic movement and stability at other angles would be a direct infringement of the patent.

Why Competitors Cannot Bypass the Patent:

- The high-tech programmable knitwear sector relies heavily on precision engineering for innovation. However, for the specific
 function of self-adjustment, only the patented method—based on the principles of mechanical panel movement—can achieve
 the dynamic fit.
- Even if competitors attempt to reprogram or adapt existing technology, they would still have to rely on the relationship between the patented mechanical principles to achieve the same results. This reliance makes it impossible to bypass the core technology without infringing on the patent.
- The mechanical foundations of the invention make it impossible to replicate the results using existing tools or incremental
 modifications. To replicate the principles of mechanical panel movement, competitors would have to develop entirely new
 manufacturing technology—a highly complex and impractical task.

Infinite Adaptability:

• The comprehensive scope of the patent supports almost unlimited programming variations, ensuring that the technology remains relevant and cutting-edge for decades to come, with continued adaptability to future advances in the field.

5. **SECURING THE FUTURE**

The patent ensures long-term relevance by anticipating advances and maintaining dominance in the mass-market apparel industry.

Industry Positioning: By covering dynamic adaptability, mass production efficiency, and multi-size functionality, the patent is future protected against:

- Incremental Advancements: Competitors cannot tweak existing methods to replicate the same results.
- Adjacent Innovations: Efforts to adapt the principles to other fields (e.g., medical, sportswear) would still fall within the scope of the patent.

Core dependency: To achieve dynamic fit, no existing framework can replicate the results without relying on the principles protected by this patent in the field of high-tech knitwear, including 3D and programmable knitwear, or elsewhere on a mass scale.

Resilience against Theoretical Challenges: The only potential challenge to the patented framework would be to merge high-tech programmable knitwear with 3D printing. However:

- **Significant Barriers**: The development of such a hybrid system would face immense material and production inefficiencies, making it an impractical solution.
- **Patent Protections**: Any integration of 3D Print principles into high-tech programmable knitwear—particularly to incorporate reinforcement structures—would still fall under the patent protection.
- Scalability Gap: As high-tech programmable knitwear far outstrips 3D Print in terms of mass market scalability, any hybrid systems would remain within the domain of high-tech programmable knitwear and therefore subject to the patent protection.

By addressing both current and theoretical challenges, the patent remains indispensable today and resilient to future developments, ensuring its place as the foundation for continuous innovation in the dynamic garment industry.

KEY ADVANCES OVER PRIOR ART

The invention focuses on garment engineering for self-adjusting dynamic fit of tailored constructions and demonstrates that the basic principles of programmable knitwear had not been fully explored or claimed prior to these advances.

It seamlessly merges into one knit garment the stability and shaping provided by the combination of reinforcement structures with the dynamic movement of its panels placed at varying angles. This creates a balance between the shape and structure of the wearer's body and a dynamic fit for self-adjustment where needed. The closest preceding invention is a patent for knitted footwear.

Although both inventions were designed for mass production, there are two key differences:

- The knitted shoe invention was designed to be used with a sole and fastenings to maintain an even distribution of weight, force and shape.
- The current invention, on the other hand, focuses on whole-body coverage with shaping (tailoring) in a single garment, with the aim of actively shaping the body itself. Since it was considered impossible to achieve shaping with a single uniform construction without additional extra details, the need for dynamically placed areas was identified. This interplay between the controlled movement and targeted stability led to the development of the "reinforcement structures", which were recognised as the core inventive step over all previous inventions.

In addition, a similar but separate target problem was solved for a pressure garment designed for customised medical use involving body scans. However, due to its focus on customised garments rather than industrial production, it is not discussed here.

Summary:

The innovation outlined provides a transformative approach to garment technology that directly addresses key issues of scalability, sustainability and fit. These features, which are detailed in the patent document, include:

- Sustainability: The use of a single material type throughout the garment ensures ease of recycling, while the elimination of fasteners, seams, and varied material zones creates a streamlined recycling cycle with minimal waste. This not only makes the process uniquely environmentally friendly but also significantly reduces production complexity.
- Infinite Scalability: The garment construction method ensures perfect fit across a range of production scales, from small-scale to large-scale industrial production. By merging dynamic adaptability with static fixation into any design, the invention enables mass production of such garments without compromising quality or fit, eliminating the need for elastic fibers, varied fabric zones, or traditional seams.
- Universal Compatibility: The process works seamlessly with any high-tech programmable knitting technology, without the
 need for special hardware or software modifications. This ensures that the innovation can be widely adopted across the
 industry, providing unrivalled flexibility and scalability.
- **Dynamic and Static Fit**: The synergy of reinforcement structures and carefully engineered material adaptation properties ensures that the garment moves with the body in real time while maintaining its tailored shape. This is achieved through precise patented principles that control the behaviour of the materials, rather than relying on multiple fibre types or additional details.

FIT. PRODUCTION METHODS

Responsive Tailoring sets a new standard in mass-produced apparel, transforming garments into dynamic pieces that adjust their fit, shape and structure in real time, ensuring both comfort and a perfectly tailored look. This innovation seamlessly merges the precision of tailoring with the functional adaptability of modern technology.

> Perfect Fit achieved withou individual

personalise fittings and

productio

2. and 3.

Suitable for the mass

3-4 steps required for

While bespoke woven garments, crafted by skilled tailors (see Table 1), offer the best fit, they are costly and require adjustments for weight fluctuations. Bespoke knitwear offers the best personalized tailoring experience for custom-made garments (see Table 1) when combined with a personalized 3D body scan of the customer, alongside tailored programming and production.

Table 2: In contrast, mass-produced woven garments offer limited personalisation through alterations, but lack flexibility as body parameters increase. On the other hand, massproduced knitwear, available at various price points, offers a better fit due to its inherent stretch. However, it cannot be adjusted to fit different body types and does not retain its shape over time. To date, high-tech programmable knits have provided the best fit for massproduced garments (see Table 2).

THE FOLLOWING STEPS ARE ELIMINATED BY THE PATENTED CORRELATION METHOD:

STEP 1 CUSTOM MEASUREMENTS, ELIMINATED:

The Method does not require precise body measurements. The garment is designed to fit within each preset size. EXAMPLE:

- Small size: 38/40IT, fits 36IT-42IT;
- Medium size: 42/44IT, fits 40IT-46IT;
- Large size: 46/48IT, fits 44IT-50IT.

The customer must choose between the S/M/L sizes of the finished product to obtain a garment that fits perfectly.

STEP 2 DESIGN/PATTERN/PROGRAM DEVELOPMENT, ELIMINATED:

The process does not require individual design/pattern/programming development. Garments are made to adjust themselves to the three sizes provided. The selfadjustment of the garment to become a fully fitted garment includes the shaping of the bust/waist/hip areas of any body type within the S/M/L sizes.

$STEP\ 3\ SEWING/KNITTING,\ SUBSTITUTED\ FOR:$

A fully automated knitting process supervised by a technician. A technician can oversee the production of multiple garments at the same time from the control centre, increasing production efficiency not only by illuminating all the steps described, but also by producing multiple garments at the same time.

STEP 4 FITTING AND ALTERATIONS, ELIMINATED.

The Method does not require fittings or alterations to achieve a self-adjusting madeto-measure alike garment. A customer has to choose between S/M/L sizes of the final

STEP 5 FINISHING, DECREASED TO:

Tying a few threads, washing and ironing the finished garment.

TABLE 1: THE METHODS AVAILABLE TO ACHIEVE PERFECT FIT

		1.	2.	3.
No.	Action	THE PATENTED METHOD HIGH-TECH Knitting Programming Production	BESPOKE MADE TO MEASURE Woven Production	BESPOKE HIGH-TECH WITH 3D BODY SCAN Knitting Programming Production
1.	Perfect Fit without individual measurements or individual 3D body scan	<u> </u>	_	_
2.	Perfect fit with individual measurements	_	\	Altern ative
3.	Perfect fit with individual 3D body scan	_	Alternat ive	\checkmark
4.	Prerequisite for a personalised pattern	_	$ $ \vee	\checkmark
5.	Prerequisite for personalised programming	_	_	\checkmark
6.	Requirements for the fittings and modifications	_		\checkmark
7.	Built-in self-adjustment	\ <u>-</u>	_	_
8.	Scalability for Mass production	<u> </u>	_	-

TABLE 2: ALL AVAILABLE PRODUCTION METHODS

METHODS	FIT	SELF-	STABILITY/	DISTORTION	COMFORT	WASTE	PRODUCTION	PRICE	SCALABILITY
		ADJUSTABILITY	STRUCTURE				COST		LITY
1. BESPOKE MADE-TO-MEASURE WOVEN GARMENTS	Perfect	Variable	Stable	Minimal	Comfortable	Variable	Very High	Very High	_
2. BESPOKE HIGH-TECH KNITWEAR WITH 3D SCAN	Perfect	Variable	Stable	Minimal	Very Comfortable	Minimal	Very High	Very High	-
3. MASS-PRODUCED WOVEN GARMENTS	Sub- Optimal**	_	Variable	Variable	Sub- Optimal**	High	Low- Medium	Variable	Unlimited
4. MASS-PRODUCED KNITWEAR:									
4.1. MASS PRODUCED LOW-MEDIUM-HIGH PRICES	Sub- Optimal**	_	Low	High	Sub- Optimal**	Variable	Low	Variable	Unlimited
4.2. HIGH-TECH PROGRAMMABLE KNITWEAR (ADVANCED TECHNOLOGY) WHOLEGARMENT, 3D KNIT AND SEAMLESS	Good	-	Variable	Variable	Very Comfortable	_	Moderate	Moderate	Unlimited
5. RESPONSIVE TAILORING THROUGH DYNAMIC FIT ADJUSTMENTS PATENTED CORRELATION METHOD	Perfect	<u> </u>	Stable	Minimal	Very Comfortable	_	Moderate	Variable	Unlimited

Variable*. The variability depends on specific factors such as the shape and style of the garment, the choice of yarn and the application of optimisation processes at different stages of production.
Sub-Optimal**. Unless the wearer's measurements are the same as the size for which the original prototypes were made, it is not easy to achieve a perfect fit. Or a very comfortable or a very good fit

$NATALIYA DOLENKO^{\mathsf{TM}}$

ULTIMATE SUSTAINABILITY

WASTE-FREE PERFECT FIT

At the end of their life cycle, garments are very easy to recycle because the perfect fit does not require the use of lycra or other stretch fibres, fasteners or foreign objects. The garments can be made from one type of material.

No Fasteners

No Additional Details

Can be Made with the Same Yarn
Throughout The Garment

Up to 85% Luxury Fibre Recovery Rate

THE METHOD ACHIEVES
PERFECT FIT WHILE AVOIDING
THE MAIN PROBLEMS
IN RECYCLING.

MAIN RECYCLING PROBLEMS:

Removing Fasteners: Zippers, buttons, and other fasteners must be manually removed before recycling, which is labor-intensive and time-consuming.

Separating Different Fabrics: Garments made from multiple fabrics (e.g., blends of cotton and polyester) are difficult to recycle because the materials must be separated, and many recyclers can only process single-material textiles.

Different Structures in a Single Garment: Variations in fabric structure (knit vs. woven, for example) within one garment complicate recycling processes, as different structures require different treatments.

Presence of Elastics and Padding: Elastic bands, foam padding, and other non-textile components (e.g., in underwear, bras, or jackets) complicate the recycling process, as they often need to be removed or treated separately.

Coatings and Finishes: Some garments have waterproof coatings, flame retardants, or other finishes that can interfere with recycling, requiring additional steps to remove these chemicals before the garment can be processed.

Blended Fibers: Fiber blends (e.g., cotton-polyester) are difficult to recycle efficiently because the different fiber types often require separate recycling processes, it's difficult to reclaim pure fibers from blends.

Thread and Seams: Garments sewn with different types of thread (synthetic vs. natural) or reinforced seams can complicate the recycling process as these threads may not be compatible with the recycling methods used for the fabric.

NATALIYA DOLENKO GENÈVE SA & INVENTOR LEGAL DISCLAIMER:

PROCESS OPTIMISATION RESULTS

GENERAL.

Perfect Fit For Mass Production: The Method allows to achieve a near perfect match with individually tailored bespoke garments in both in woven and knit production.

Self-Adjustment: Each garment adapts to the wearer's changing body measurements (within 2 standard sizes).

Ultimate Performance: The tailored properties of the garment are maintained even in extreme weather conditions.

Tailored Integrity: The tailored properties of the garment are maintained throughout the life of the garment.

Flexibility Of Fit: Garments can be designed and manufactured as fully tailored or semi-tailored models to fit all body types (in 8 standard sizes with only 3 production sizes).

Versatility Of Fiber Composition: Garments can be made from any fibre: natural, man-made or any combination.

Infinite Fabric And Structure Options: Unlimited interchangeable possibilities to create fabrics and structures (shapes).

Unparalleled Comfort: Garments that provide second-skin comfort, protection and coverage.

QUALITY.

Sequential Refinement: Modular design and development allows each stage of the process to be perfected before moving on to the next, ensuring nothing is overlooked.

Precision Evolution: The attention to detail of highly skilled tailors has evolved into precision engineering during the manufacturing process. This evolution ensures that the final product is perfectly matches to the intended design, even when scalability becomes a factor.

High-Tech Quality: Hand finishing has evolved into pioneering manufacturing capability that maintain the highest levels of quality in the finished product for the mass market.

Enhanced Consistency: Manufacturing errors are virtually eliminated. This ensures a product of consistent quality and minimises the need for rework or remanufacturing.

OPTIMISATION TO ENSURE SUSTAINABILITY.

Zero Waste Production.

Timeless: Perfect fit never goes out of style.

Optimised Design: Cost, time, energy and waste are significantly reduced during the product design and development phase.

Improved Garment Performance: Incorporating smart fabrics and wearable technologies into Perfect Fit garments to improve wearability, durability and aesthetics can provide additional benefits, including medical benefits such as the option of additional back support where required.

Ease Of Maintenance: Garments typically do not need to be ironed and can be hand-washed, reducing the need for dry cleaning and making maintenance more convenient.

Production And Stock Reduction: The process allows efficient production of up to 8 sizes from only 3 sizes (S/M/L): the self-adjusting function optimises resources and reduces waste, transport and stock.

Extended Garment Life: Through the intelligent interactive movement of its parts, the garment dramatically reduces wear and tear and distortion, resulting in a longer service life.

Sustainable Lifecycle: At the end of their life cycle, garments are very easy to recycle because the perfect fit does not require the use of lycra or other stretch fibres, fasteners or foreign objects. The garments can be made from one type of material.

OPTIMISATION OF THE PRODUCTION PROCESSES.

Flexibility to Choose the Latest Innovations: Seamless technology, 3D Knitting or WholeGarment (WG), the latter being the most advanced.

Improved Resilience: By reducing dependency on key parameters such as a highly skilled workforce and gaining greater flexibility in raw material supply options and choice of manufacturing and its locations, production processes become much less sensitive to supply chain disruptions, resulting in resilient production.

Increased Efficiency: The interactive production mechanisms that modular design and programming introduce to the design and development process significantly improve the efficiency of these stages, enabling rapid and accurate design adjustments while minimising the risk of error.

Creative Flexibility Through High-tech Precision: Modular development offers unparalleled flexibility in both the design and development phases. It allows these stages to mirror the creative and aesthetic processes of leading fashion houses, facilitating the achievement of perfect fit and fostering creativity. This approach ensures that production steps are closely aligned with the creative vision, enabling seamless integration of design adjustments and minimising the risk of errors.

Real-time Customer Engagement: Modular processes enable flexible manufacturing and rapid response to feedback. Full flexibility of production cycles, enabling on-demand or mass production without compromising production efficiency and quality. Continuous production programmed to work 24 hours a day.

Digitally Documented Processes: Improved quality control allows traceability and transparency throughout the production cycle.

UNLIMITED SCALABILITY OF THE PERFECT FIT.

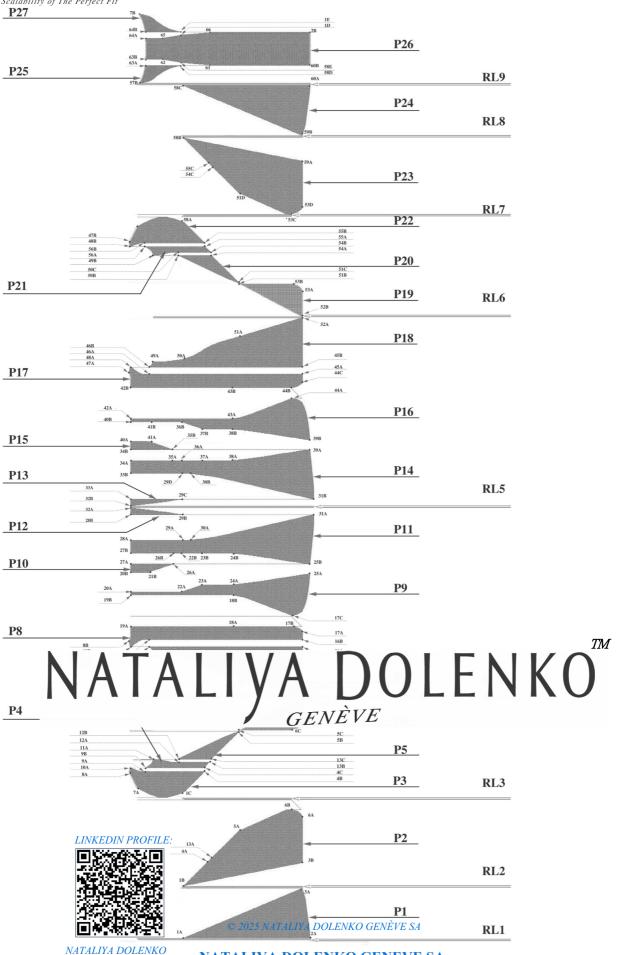
https://www.linkedin.com/posts/nataliya-dolenko-84702a218_apparel-innovation-the-perfect-fit-methodndg-activity-7252681285339418624-K.hMPutm_source=share&utm_medium=member_desktop

PERFECT FIT

"In the realm of fashion, beyond considerations of brand, fabric, or passing trends, lies in the quest for the perfect fit of our clothes, making them appear as if they had been made exclusively for us. It truly distinguishes any garment, whether in menswear or womenswear, and is the indispensable feature that accommodates individuals of varying proportions, beyond mere body sizes. The Perfect Fit has the remarkable ability to enhance the aesthetic appeal of each of us and all the clothes we wear. If a garment doesn't fit the wearer perfectly, it may not achieve its intended result — looking good and feeling good.

Universally transformative, perfectly fitting garments remain eternally flattering, desirable, and appropriate for individuals of different genders, body types, and sizes. The Perfect Fit is a timeless concept, as such items add an exquisite aesthetic refinement to our appearance, ensuring an undistorted flow around the body regardless of circumstances. Ultimately, looking good in our clothes transcends situational or locational boundaries, as it is intimately linked to the confidence in how we are perceived by the public. This confidence gives us comfort and allows us to express ourselves and our emotions authentically in any given moment, leading us to remain authentic to who we are."

— Nataliya Dolenko, Inventor



Nataliya Dolenko, the founder of NATALIYA DOLENKO GENÈVE, is an engineer and designer with a background in programming. She has won two fashion awards and collaborated with renowned designers Alexander McQueen and Hussein Chalayan. She has experience in both knitwear and couture and holds an MTech in Optimisation of Automation from National Technical University of Ukraine and a degree in Fashion with Knit from Central Saint Martins College of Art and Design, London.

LINKS:

- VIEW TEXTILES FORECAST A/W 2026/27 ISSUE 150, THE BEAUTY OF CERTAINTY
- NATALIYA DOLENKO GENÈVE: PRESS RELEASE: SYSTEMS FOR SCALABLE PRECISION IN APPAREL
- NATALIYA DOLENKO GENÈVE: PRESS RELEASE ANNEXES DOCUMENTATION:
 - A1: Mapping Scalable Precision in Apparel
 - A2: Unlocking Future Efficiency
 - A3: Advanced Fit Logic
 - **A4: Process Optimisation**
 - A5: Financial Impact & Global Potential
 - A6: CO₂ Reduction & Perfect Fit
 - A7: Waste Reduction Through Perfect Fit
 - A8: Circular Material Engineering & Luxury Fibre Preservation
 - A9: Patented Invention
 - A10: Advanced Predictive Programming
- NATALIYA DOLENKO GENÈVE: THE PATENTED CORRELATION METHOD ENGINEERING-DRIVEN APPAREL:
- VIEW TEXTILES FORECAST S/S 2026 ISSUE 148, APPAREL MANUFACTURING INNOVATION
- NIKE INNOVATE C.V. GOOGLE PATENTS: WO2016018904A1, CITED BY AN EXAMINER NIKE INNOVATE C.V. AND NATALIYA DOLENKO GENÈVE SA ONLY, REFERENCES TO ADIDAS AG, NIKE INNOVATE C.V. AND NATALIYA DOLENKO GENÈVE SA
- INVENTION: WORLD INTELLECTUAL PROPERTY ORGANISATION (WIPO) WO2024094577. APPLICATION NUMBER PCT/EP2023/08012. PUBLICATION DATE: 10.05.2024. Applicants: NATALIYA DOLENKO GENEVE SA [CH]/[CH]. Inventors: DOLENKO, Nataliya Link: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024094577
- NATALIYA DOLENKO GENÈVE SA: GOOGLE PATENTS: EP4365344A1

NATALIYA DOLENKO GENEVE SA

WWW.IPNATALIYADOLENKO.COM

C/O FIDUCIAIRE DE LA CITÉ, BD HELVÉTIQUE 36, 1207 GENEVA, SWITZERLAND

REGISTRATION NUMBER: CH-660.2.065.019-0